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Abstract Experiments using the National Oceanic and Atmospheric Administration Finite-Volume
Cubed-Sphere Dynamical Core Global Forecasting System (FV3GFS) reveal that the four-dimensional
ensemble-variational method (4DEnVAR) performs similarly to an ensemble Kalman filter (EnKF) when no
radiance observations are assimilated, but 4DEnVAR is superior to an EnKF when radiance observations are
assimilated. The hypothesis for the cause of the differences between 4DEnVAR and EnKF is the difference
in vertical localization, since radiance observations are integral observations in the vertical and 4DEnVAR uses
model space localization while the EnKF uses observation space localization. A modulation approach, which
generates an expanded ensemble from the raw ensemble and eigenvectors of the localization matrix, has
been adopted to implement model space localization in the operational National Oceanic and Atmospheric
Administration EnKF. As constructed, the expanded ensemble is a square root of the vertically localized
background error covariance matrix, so no explicit vertical localization is necessary during the EnKF update.
The size of the expanded ensemble is proportional to the rank of the vertical localization matrix—for a
vertical localization scale of 1.5 (3.0) scale heights, 12 (7) eigenvectors explain 96% of the variance of the
localization matrix, so the expanded ensemble is 12 (7) times larger than the raw ensemble. Results from
assimilating only radiance observations in the FV3GFS model confirm that EnKF with model-space vertical
localization performs better than observation-space localization, and produces results similar to 4DEnVAR.
Moreover, a 960-member ensemble is sufficient to turn off the vertical localization entirely and yields
significant improvements comparing to an 80-member ensemble with model space localization.

1. Introduction

The current National Centers for Environmental Prediction operational Global Forecasting System utilizes a
hybrid four-dimensional ensemble-variational (4DEnVAR) data assimilation system (Kleist & Ide, 2015;
Wang & Lei, 2014). The high-resolution control forecast is updated by the 4DEnVAR with a combination of
time-invariant static background error covariance (B) and flow-dependent B estimated from a lower
resolution ensemble, while the ensemble is updated using an ensemble Kalman filter (EnKF; Shlyaeva &
Whitaker, 2018). The 4DEnVAR without static B and dynamic constraints (e.g., the tangent-linear
normal-mode constrain, TLNMC, Kleist, Parrish, Derber, Treadon, Errico, & Yang, 2009) solves the same
equations as the EnKF and apart from algorithmic details should produce a very similar solution. However,
we have found this to be true only when no satellite radiance observations are assimilated.

Using the new Finite-Volume Cubed-Sphere Dynamical Core (FV3; Harris & Lin, 2013) version of the National
Centers for Environmental Prediction Global Forecasting System (scheduled to become operational in 2019),
data assimilation experiments are performed at a reduced resolution of 75 km with 64 vertical levels. The
4DEnVAR and EnKF experiments assimilate the operationally used observations every 6 hr from 00 UTC 1
January 2016 to 00 UTC 6 February 2016, and the data between 00 UTC 6 January 2016 and 00 UTC 6
February 2016 are analyzed. The details of experiments are described in section 3. The globally averaged
root-mean-square error relative to the wind, temperature, and relative humidity of the two experiments with
assimilation of all observations but radiance data is shown in Figure 1. The two experiments are nearly
identical, with similar results are obtained for the Northern Hemisphere (NH; 20–90°N), the Tropics (TR;
20°S to 20°N), and the Southern Hemisphere (SH; 90–20°S; figures are not shown). When including radiance
observations, 4DEnVAR has advantages over EnKF, especially over the SH, as shown in Figure 2. We
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hypothesize that these differences are due to the way vertical localization is implemented in 4DEnVAR and
the EnKF, since radiance observations are integral observations in the vertical and 4DEnVAR uses model
space localization while the EnKF uses observation space localization.

The Kalman gain matrix (K) with model space localization (Houtekamer & Mitchell, 2001) can be written as

K¼ ρm∘P
f

� �
HT H ρm∘P

f
� �

HTþR
� ��1

; (1)

where Pf, a k × kmatrix (k is number of state variables), is the sample background-error covariancematrix;H, a
p × kmatrix (p is number of observations), is the forward observation operator (linearized about the ensemble

Figure 1. Globally and temporally averaged RMS background forecast observation innovation profiles that are the differ-
ences between 6-hr background forecasts interpolated to observation locations and in situ conventional observations
includingmarine and land surface stations, rawinsonde, and aircraft between 00 UTC 6 January 2016 and 00 UTC 6 February
2016, for (a) wind, (b) temperature, and (c) relative humidity from experiments 4DEnVAR and ensemble Kalman filter
assimilating conventional observations. 4DEnVAR = four-dimensional ensemble-variational method; EnKF = ensemble
Kalman filter; RMS = root-mean-square; RH = relative humidity.

Figure 2. Same as in Figure 1 but for the Southern Hemisphere and experiments 4DEnVAR and EnKF assimilating both con-
ventional and radiance observations. 4DEnVAR = four-dimensional ensemble-variational method; EnKF = ensemble Kalman
filter; RMS = root-mean-square; RH = relative humidity.
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mean background state); R, a p × p matrix, is the observation error covariance; ρm is the covariance localiza-
tion matrix in model space; and ∘ denotes the Schur (element-wise) product. Localization in model space is
directly applied to the background-error covariance matrix, and it is conducted before applying the forward
observation operator. Thus, model space localization involves distances between state variables only. With
localization in observation space, K can be written as

K¼ ρo1∘ P fHT� �� �
ρo2∘ HP fHT� �þR
� ��1

; (2)

where ρo1 and ρo2 are the localization matrices for observation space localization. The ρo1 is an k × p matrix
with each column containing localization function for one observation with the state vector, while ρo2 is a
p × pmatrix with each column containing localization function for one observation with all the other obser-
vations. Localization in observation space is operated after the forward operator is applied to the
background-error covariance matrix. Thus, observation space localization involves distances between obser-
vations and state variables and between observations with other observations. Model space localization
(equation (1)) and observation space localization (equation (2)) are equivalent whenH is local, but not equiva-
lent when H is nonlocal as in the case of radiance observations (Campbell et al., 2010).

As nonlocal observations, satellite radiances can provide information about temperature, moisture, ozone,
and other quantities in an atmospheric column. Therefore, the vertical structure of correlations between radi-
ance observations and model state variables can be qualitatively different from those between local observa-
tions (i.e., the same quantities as model state variables) and model state variables (Anderson & Lei, 2013; Lei
et al., 2016). Furthermore, the distance between a radiance observation and a model state variable is not well
defined. For these reasons, vertical localization for radiance observations in observation space is not as
straightforward as for local observations. Observation space localization is usually used in EnKF systems for
reasons of computation efficiency. Radiance observations are often treated as local observations whose ver-
tical locations are defined by the level at which the weighting function used in the radiative transfer peaks
(e.g., Houtekamer & Mitchell, 2005; Houtekamer et al., 2005). In addition to the commonly used fixed
Gaspari and Cohn localization (Gaspari & Cohn, 1999), there have been adaptive algorithms for localizing
the impacts of radiance observations. Miyoshi and Sato (2007) used the flow-dependent normalized weight-
ing function as vertical localization function. Lei et al. (2016) applied the global group filter (Lei & Anderson,
2014) to estimate the vertical localization function for satellite radiances. Fertig et al. (2007) updated the state
at a given location by radiance observations that are strongly correlated to the model state. The potential
imbalances caused by different types of localization were discussed by Greybush et al. (2011).

Besides the various adaptive localization algorithms for the radiance observations in observation space,
Campbell et al. (2010) used the Navy Operational Global Atmospheric Prediction System and the
Advanced Microwave Sounding Unit A (AMSU-A) observations to reveal that localizing radiance observations
in model space was more accurate than localizing in observation space. However, motived by the AMSU-A
observations assimilated by the Global Forecasting System and 4DEnVAR, Lei and Whitaker (2015) found that
the opposite can be true when negative background error covariances occur with a predominately positive
forward observation operator. In order to investigate the impact of observation space localization for
radiances in the EnKF, and to validate the hypothesis that the observed differences between 4DEnVAR and
EnKF when radiances are assimilated are due to vertical localization, a method for applying model space ver-
tical localization in the EnKF is desired.

Bishop and Hodyss (2009a, 2009b) proposed an adaptive localization algorithm, ensemble correlations raised
to a power, to better capture flow-dependent error correlations. They used it in a variation of Hunt et al.’s
(2007) local observation volume form of Bishop et al.’s (2001) ensemble transform Kalman filter (ETKF) known
as the LETKF. To reduce the computational cost of ensemble correlations raised to a power, a modulation
matrix product between the raw ensemble perturbations and the eigenvectors of the localization matrix
(equations 1 and 2 in Bishop & Hodyss 2009b) was used. This modulation process increases the number of
ensemble perturbations in a way that implicitly imbeds the model space localization in the modulated
ensemble covariance matrix. Modulated ensemble perturbations can be used in any type of EnKF update
without localization to update the analysis mean. However, as noted in Bishop et al. (2017), modulated
ensembles present a conundrum for EnKFs that create analysis perturbations by right-multiplying forecast
perturbations by a transformation matrix (e.g., Bishop et al., 2001, ETKF; Hunt et al., 2007, local form of it).
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Specifically, if not adjusted such EnKFs create the same number of analysis perturbations as the number of
modulated forecast perturbations, which is much larger than the number of ensemble members needed
to initialize the ensemble forecasting system. Thus, one is left with the problem of efficiently finding an ana-
lysis ensemble with fewer members whose covariance most accurately approximates the true analysis error
covariance matrix. This conundrum does not arise in EnKFs whose analysis perturbations are created by left-
multiplying the forecast perturbations by a matrix (e.g., Anderson, 2001; Houtekamer & Mitchell, 1998;
Whitaker & Hamill, 2002). They escape this conundrum by left-multiplying the raw unmodulated ensemble
perturbations by a transformation matrix to obtain an analysis ensemble with precisely the same number
of analysis perturbations as forecast perturbations. To solve the conundrum for ETKF-like schemes, Bishop
et al. (2017) derived a gain form of the ETKF that uses a left-multiplying transformation matrix rather than
a right-multiplying transformation matrix and which includes an inherent localization-dependent inflation
factor. This Gain form of the ETKF (the GETKF) provided precisely the same number of analysis perturbations
as forecast perturbations, and the inherent localization-dependent inflation factor also improved its perfor-
mance in idealized models. Among other things, this paper provides the first test of a local form of the
GETKF (LGETKF) in a research version of an operational weather forecasting system. However, since the pri-
mary focus of the study is to quantify the effect of using modulated ensembles to implement model space
localization in the vertical, the inherent inflation factor is set to unity in this study.

This paper is organized as follows. The methodology of implementing model space localization in a serial
EnKF and a LGETKF is described in section 2. Section 3 discusses the experimental design. Results are pre-
sented in sections 4 and 5, and the findings of this study are summarized in section 6.

2. Methodology

National Oceanic and Atmospheric Administration (NOAA) has developed implementations of Whitaker and
Hamill’s (2002) ensemble square root filter (EnSRF) in a form that serially assimilates observations and the
local form of Bishop et al.’s (2001) ETKF (Hunt et al., 2007) that assimilates all observations within an observa-
tion volume in a single step. The manner in which the larger-size ensemble of modulated ensemble pertur-
bations should be used to update the ensemble mean and the smaller size ensemble of states to be
propagated by the nonlinear model depends on the type of EnKF implemented and is an area of active
research. In the following, we first introduce the modulation process and then discuss the methods by which
modulated ensembles are incorporated within the EnSRF and LETKF separately.

Let X ¼ x f
1 ’; x

f
2 ’;…; x f

N ’
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
, where x f

j ’ ¼ x f
j �

1
N

∑
N

i¼1
x f
i is the jth ensemble perturbation corresponding

to the jth ensemble forecast member x f
j and X gives the square root of the sample background-error covar-

iance matrix Pf = XXT. Let W = [w1,w2,…,wL] give the square root of a model space localization matrix
ρm =WWT. As proven in equations 1 and 2 of Bishop and Hodyss (2009b), the sample background-error cov-
ariance matrix with model space localization can be given by the factorization property:

P f
loc ¼ ρm∘P

f ¼ WWT
� �

∘ XXT
� � ¼ ZZT ; (3)

where Z =WΔX andΔ denote themodulation product. If X hasN (ensemble size) columns andW has L (eigen-
vectors of ρm) columns, the modulated ensemble perturbations are defined by

Z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p xf ’1 ∘w1; xf ’2 ∘w1;…; xf ’N∘w1
� �

; xf ’1 ∘w2; xf ’2 ∘w2;…; xf ’N∘w2
� �

;…;
�

xf ’1 ∘wL; xf ’2 ∘wL;…; xf ’N∘wL
� ��

(4)

The modulated ensemble perturbations involve an expansion of ensemble size from N to M = NL. The mean

of the modulated ensemble perturbations is equal to zero since
1
M

∑
M

i¼1
zf ’i ¼ ∑

L

k¼1
∑
N

j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p xf ’j ∘wk ¼ ∑
L

k¼1

∑
N

j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p xf ’j

� �
∘wk ¼ 0. Thus, adding the ensemble mean to the modulated ensemble perturbations gives

the modulated ensemble
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z f
i ¼ 1

N
∑
N

j¼1
x f
j þ

ffiffiffiffi
M

p
z f
i ’: (5)

Themodulated ensemble has the same ensemble mean as the raw ensemble and the same covariance as the
localized ensemble covariance matrix.

2.1. Use of Modulated Ensemble in EnSRF

The EnSRF uses the traditional Kalman gain to update the ensemble mean and a reduced Kalman gain to
update the ensemble perturbations. Using the modulated ensemble perturbations, the update equation
for the ensemble mean is

xa ¼ xf þ Z HZð ÞT HZð Þ HZð ÞT þ R
	 
�1

y� H x fð Þ
h i

¼ xf þ P f
locH

T HP f
locH

T þ R
� ��1

y� H x fð Þ
h i

;
(6)

and the update equation for the ensemble perturbations is

x’a ¼ x’f � Z HZð ÞT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HZð Þ HZð ÞT þ R

q� ��1
" #T ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HZð Þ HZð ÞT þ R
	 
r

þ
ffiffiffi
R

p� ��1

Hx’f

¼ x’f � P f
locH

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HP f

locH
T þ R

q� ��1
" #T ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HP f
locH

T þ R
� �q

þ ffiffiffi
R

ph i�1

Hx’f

(7)

It is evident that the traditional Kalman gain K = Z(HZ)T((HZ)(HZ)T + R)�1 and reduced Kalman gain eK ¼ Z

HZð ÞT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HZð Þ HZð ÞT þ R

q� ��1
" #T ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HZð Þ HZð ÞT þ R
	 
r

þ
ffiffiffi
R

p� ��1

are matrices with dimension k × p (k and

p are numbers of state variables and observations), so that it is straightforward to use K and eK for updating

the raw ensemble mean and perturbations. Since P f
loc ¼ HZð Þ HZð ÞT is equivalent to ρm ∘ Pf, the ensemble

analysis from equations (6) and (7) is equivalent to that with model space localization (equation (1)).

2.2. Use of Modulated Ensembles in a Local Observation Volume Framework

To better accommodate ensemble expansions such as that which results from ensemble modulation, Bishop
et al. (2017) proposed a gain form of the ensemble transform Kalman filter (GETKF) that could be used in the
local observation volume framework of a LETKF as a local GETKF or LGETKF.

Let eHZ ¼ 1ffiffiffiffi
M

p R�1=2 H z f
1

� �� H z fð Þ
	 


; H z f
2

� �� H z fð Þ
	 


;…; H z f
M

� �� H z fð Þ
	 
h i

, where H z fð Þ ¼ 1
M

∑
M

i¼1
H z f

i

� �
.

Using singular value decomposition (SVD), eHZ can be written aseHZ ¼ EΓ1=2CT : (8)

Equations 11 and 12 from Bishop et al. (2017) give the usual ETKF or LETKF update equation of ensemble
mean:

xa ¼ xfþZC Γþ Ið Þ�1CT eHZ	 
T
R�1=2 y� H x fð Þ

h i
; (9)

while equation 29 from Bishop et al. (2017) implies that the update equation for the ensemble perturba-
tions is

Xa’ ¼ a Xf ’ � ZC I� Γþ Ið Þ�1=2
h i

Γ�1CT eHZ	 
TeHXf ’


 �
; (10)

where eHXf ’ ¼ R�1=2 H x f
1

� �� H x fð Þ
	 


; H x f
2

� �� H x fð Þ
	 


;…; H x f
N

� �� H x fð Þ
	 
h i

and a is an inflation factor

that in Bishop et al. (2017) was used to ensure a consistency relation between the posterior modulated
ensemble and the posterior raw ensemble. In this work, we set a = 1. Unlike the ETKF, which would update
all the M modulated ensemble perturbations, equation (10) just updates the raw N-member forecast
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ensemble. The updated N ensemble perturbations and the ensemble mean posterior are then used to initi-
alize the next ensemble background forecast. In the appendix, as in Bishop et al. (2001), we emphasize that
when the number of observations p in an observation volume exceeds the number of modulated ensemble
members M, it will, in general, be more computationally efficient to obtain C and Γ from a direct eigenvalue

decomposition of eHZ	 
TeHZ rather than from a direct SVD of eHZ. It is often more computationally efficient to

implement equation (10) as a series of operations on eHXf ’ rather than as the operation of a modified gain
matrix on Xf’.

3. Experimental Design

The Finite-Volume Cubed-Sphere Dynamical Core–Global Forecasting System (FV3GFS; https://vlab.ncep.
noaa.gov/web/fv3gfs), scheduled to become operational at NOAA in 2019, is used for assimilation experi-
ments of EnKF and 4DEnVAR at a reduced resolution of 75-km resolution and 64 vertical levels. The default
ensemble size N is 80. The operationally assimilated observations include conventional observations
(http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_2.htm), GPS radio occultation
bending angle, and satellite radiances (http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.
doc/table_18.htm). Experiments discussed in section 1 assimilate either conventional observations and
GPS radio occultation bending angle observations (Figure 1) or both conventional observations, GPS radio
occultation bending angle, and satellite radiances (Figure 2). To clearly examine the impact of model space
and observation space localizations on the assimilation of radiance observations, experiments in sections 4
and 5 only assimilate satellite radiances. The gridpoint statistical interpolation (Kleist, Parrish, Derber,
Treadon, Wu, & Lord, 2009; Wu et al., 2002) is used to compute and save the values of Hxf for the ensemble
mean, along with the linearized H operator. The linearized H operator is used in the EnKF to compute the
observation-space ensemble perturbations as described by Shlyaeva and Whitaker (2018). The bias correc-
tion coefficients for the satellite radiance bias correction are provided by a separate 4DEnVar experiment
using the same forecast model run at 50-km resolution but assimilating both conventional and radiance
observations. The observation error variance (R; which is assumed diagonal) follows the operational values.

To remove spurious covariances arising from sampling errors, covariance localization is used. By assuming
that covariance localization is separable, the localization is applied separately in the horizontal and vertical.
The GC localization function is used for both horizontal and vertical localization, and the horizontal (vertical)
localization tapers the observation impact to 0 at 1,500 km (1.5 scale heights). EnKF experiments of serial
EnSRF (LETKF) use these GC localization length scales that taper the observation impact (inverse of the obser-
vation error variance) to 0, but experiment 4DEnVAR incorporates Gaussian e-folding scale for localization,
and the equivalent horizontal (vertical) localization in Gaussian e-folding scale is approximately 581 km
(0.581 scale heights). The same localization parameters are used for experiments with model space and
observation space localizations. A doubled vertical localization length scale (3.0 scale heights) is used in an
additional experiment. To maintain appropriate ensemble spread and avoid filter divergence, multiplicative
covariance inflation is used. The relaxation-to-prior spread (Whitaker & Hamill, 2012) that relaxes posterior
ensemble spread back to prior ensemble spread with a relaxation coefficient of 0.85 is applied. Stochastic
parameterizations, such as the Stochastically Perturbed Parameterization Tendencies Scheme (Palmer
et al., 2009), Stochastic Kinetic Energy Backscatter (Palmer et al., 2009), and Perturbed Boundary Layer
Humidity (Tompkins & Berner, 2008), are used to represent model uncertainty within the ensemble forecast
step, and no additive inflation is applied.

To assimilate the observations, experiment 4DEnVAR uses the National Centers for Environmental Prediction
hybrid 4DEnVAR (Kleist & Ide, 2015; Wang & Lei, 2014), in which the prior ensemble mean is updated by the
4DEnVAR and the ensemble perturbations are updated by the NOAA EnKF (NCAR Developmental Testbed
Center, 2015; Shlyaeva & Whitaker, 2018). In the single-resolution configuration, there is no separate control
forecast—instead, the ensemble mean prior is used as background for the hybrid 4DEnVAR analysis, which is
different from the dual-resolution configuration used in operations. The 4DEnVAR utilizes 4-D prior ensemble
perturbations and no static B component, a single outer loop, and has the TLNMC (Kleist, Parrish, Derber,
Treadon, Errico, & Yang, 2009) turned off to facilitate direct comparisons with the EnKF. Experiment EnKF uses
the NOAA EnKF to update both the prior ensemble mean and ensemble perturbations. Although the same
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horizontal and vertical localization length scales are used for experiments 4DEnVAR and EnKF, experiment
4DEnVAR utilizes model space localization, and experiment EnKF applies observation space localization.
The LETKF algorithm (Hunt et al., 2007) of the NOAA EnKF is used to compute analysis increments with
observation-space localization.

Experiment EnKF-MS is the same as experiment EnKF, except that vertical localization is performed in model
space using the modulated ensemble approach with the LGETKF algorithm described in section 2. Since radi-
ance observations are integral observations in the vertical, here only the vertical localization is performed in
model space, while the horizontal localization is still performed in observation space. The vertical GC localiza-
tion matrix is truncated to retain L eigenvectors that explain more than 95% of the variance. For the FV3GFS
model with a GC vertical localization function with length scale of 1.5 scale heights, L = 12 explains 96% of the
variance, and gives a 960 (M = NL) member modulated ensemble. Each eigenvector has a length equal to the
number of model vertical levels (64 in this case). To generate the modulated ensemble, an element-wise pro-
duct of each localization eigenvector with every model state column for each of the three-dimensional state
variables (e.g., temperature, humidity, and zonal and meridional winds) is performed, and the first element of
each eigenvector multiplies each element of the two-dimensional state variables like surface pressure. TheM
modulated ensemble priors (equations (4) and (5)) instead of the N raw ensemble priors are ingested by the
NOAA EnKF. During the assimilation process, vertical localization is turned off, because the modulated
ensemble already contains the vertical localization in model space. The raw ensemble mean and raw ensem-
ble perturbations are updated using equations (9) and (10).

The assimilation experiments extend from 00 UTC 1 January 2016 to 00 UTC 6 February 2016. Observations
are assimilated every 6 hr, and 3-hr background forecasts are used for the forward operator. The first five days
of assimilation are discarded to avoid transient effects, and the remaining data between 00 UTC 6 January
2016 and 00 UTC 6 February 2016 are used for verification. The 6-hr background forecasts are interpolated
to observation locations of wind, temperature, and relative humidity and compared to the in situ conven-
tional observations that include marine and land surface stations, rawinsonde, and aircraft. The RMS observa-
tion innovations are averaged globally (GL), in the Northern Hemisphere (NH; 20–90°N), the Tropics (TR; 20°S
to 20°N), and the Southern Hemisphere (SH; 90–20°S), respectively. The temporally averaged RMS observa-
tion innovation profiles will be presented.

4. Results

The globally and temporally averaged RMS observation innovations profiles for wind, temperature, and rela-
tive humidity from experiments assimilating only radiance observations are shown in Figure 3. Figure 4

Figure 3. Same as in Figure 1 but for experiments 4DEnVAR, EnKF, EnKF2 (with doubled vertical localization length scale),
and EnKF-MS assimilating only radiance observations. 4DEnVAR = four-dimensional ensemble-variational method;
EnKF = ensemble Kalman filter RH = relative humidity; RMS = root-mean-square.
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displays the time series of the globally and vertically averaged RMS back-
ground forecast observation innovations, and the right-side bars denote
temporal mean of the error. Similar results are obtained for the NH, TP,
and SH (figures are not shown).

Model space localization (experiment 4DEnVAR) has advantages over
observation space localization (experiment EnKF), and the advantages
are enlarged with assimilation of only radiance observations, which are
shown by comparing Figure 3 to Figure 2. A Student’s t test is used to
assess the significance of the globally, vertically, and temporally averaged
RMS error differences. The differences between experiment 4DEnVAR and
EnKF for wind and temperature are significant given a 95% confidence,
while the differences for relative humidity are insignificant.

Experiment EnKF-MS performs nearly the same as experiment 4DEnVAR.
The differences between experiment EnKF-MS and 4DEnVAR are not sig-
nificant for all variables. If the serial EnSRF is used instead of the LGETKF,
nearly identical results are obtained (not shown). This demonstrates that
the modulated ensemble approach can be used to perform model space
localization for both the serial EnSRF and LETKF algorithms.

Lei et al. (2016) showed that a broader localization length scale was
favored for assimilating the Advanced Microwave Sounding Unit-A
(AMSU-A) radiance observations with observation space localization.
Thus, an additional experiment with doubled vertical localization length
scale for observation space localization (experiment EnKF2) is performed.
Experiment EnKF2 has smaller errors than experiment EnKF, but it still
has larger errors than EnKF-MS. The differences between experiment
EnKF2 and EnKF-MS for wind and temperature are significant given a
95% confidence, but not for the differences of relative humidity.

Given the FV3GFS model with 75-km resolution and 64 vertical levels,
assimilating only radiance observations, an ensemble size of 80 and 12
eigenvectors for the vertical localization matrix, the cost of computing
the analysis increment using model space localization (experiment EnKF-
MS) is about twice the cost of computing the analysis increment with
observation-space localization (experiment EnKF). However, if the localiza-
tion length scale is doubled, only seven eigenvectors of the vertical locali-
zation matrix are required to explain 96% of the variance, and EnKF-MS is
nearly twice as fast as the EnKF with observation space localization. This is
because the cost savings associated with only having to compute the
LGETKF eigenanalysis once for each model column dominates the extra

cost associated with the increased ensemble size as the localization length scale increases (and the size of
the modulated ensemble decreases). For our configuration, the cross-over point where EnKF-MS (LGETKF)
becomes faster than EnKF (LETKF) occurs for vertical localization length scales between 2 and 2.5 scale
heights. Further details regarding the efficient implementation of model-space localization in the LGETKF
are included in the appendix.

5. Turning Off Vertical Localization

In sections 3 and 4, the vertical GC localization matrix of the FV3GFS model with a localization length scale of
1.5 scale heights is truncated to retain the L (L = 12) eigenvectors that explain 96% of the variance, which
gives a 960 (M = NL) modulated ensemble. This suggests that a 960-member forecast background ensemble
should be large enough to turn off the vertical localization entirely. To demonstrate this hypothesis, an
experiment LETKF960 is performed. Experiment LETKF960 is the same as experiment EnKF except that verti-
cal localization is turned off and background forecast ensemble size is increased by a factor of 12 from 80 to

Figure 4. Time series of the globally and vertically averaged RMS back-
ground forecast observation innovations for (a) wind, (b) temperature, and
(c) relative humidity of experiments 4DEnVAR, EnKF, EnKF2 (with doubled
vertical localization length scale), and EnKF-MS assimilating only radiance
observations. The right-side bars denote temporal mean of the error.
4DEnVAR = four-dimensional ensemble-variational method;
EnKF = ensemble Kalman filter; RH = relative humidity; RMS = root-mean-
square.
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960. No changes were made to the horizontal localization or inflation parameters, although a broader hori-
zontal localization and less inflation may be preferred with a larger ensemble size.

The globally and temporally averaged RMS observation innovations profiles for experiments LETKF960 and
previous 4DEnVAR with 80 members are shown in Figure 5, and similar results are also obtained for the
NH, TP, and SH (figures are not shown). The increase of ensemble size to 960 and elimination of vertical loca-
lization lead to significant improvement comparing to an 80-member ensemble with model space localiza-
tion. This suggests that there is still significant room for improvement in the operational system by
reducing or mitigating the effects of sampling error, even in the presence of model error. Similar results
would be expected from a 4DEnVAR experiment with 960 members to experiment LETKF960, since vertical
localization can be turned off given a 960-member ensemble. Although experiment LETKF960 requires more
computational resources to advance 960 ensemble members than experiments with the default 80 mem-
bers, its performance is superior to experiment 4DEnVAR with 80 ensemble members and experiments
EnKF-MS and EnKF-LGETKF with 960 modulated ensemble members. The extra cost of the LETKF960 experi-
ment is dominated by the twelvefold increase in the cost of running the background ensemble forecast.
Arguably, the increased cost associated with a larger background ensemble is easier to accommodate in
an operational environment, since this cost is incurred in a less time critical part of the data assimilation cycle
and is perfectly scalable.

6. Discussions and Conclusions

Using the FV3GFS model at 75-km resolution, a 4DEnVAR experiment without static B and TLNMC performs
nearly identically to an EnKF experiment when no radiance observations are assimilated. However, 4DEnVAR
is superior when satellite radiances are assimilated. It is hypothesized that the cause of the differences
between 4DEnVAR and the EnKF is primarily due to differences in vertical localization, since radiance obser-
vations are integral observations in the vertical and 4DEnVAR uses model space localization while EnKF uses
observation space localization.

To demonstrate the hypothesis, a method for performing model space localization in an ensemble Kalman
filter was implemented using a modulation approach (Bishop & Hodyss, 2009b). The modulation approach
generates the modulated ensemble from the model-integrated raw ensemble and eigenvectors of the loca-
lization matrix. The modulated ensemble implicitly contains model space localization. For an EnSRF, it is
straightforward to apply the modulated ensemble to compute the Kalman gain and reduced Kalman gain,
and then apply these to update the original “raw” ensemble. To apply the modulation approach in an
LETKF, the gain form of the local ensemble transform Kalman filter (LGETKF; Bishop et al., 2017) is used.
The trade-off is increased computational cost for the EnKF, because the modulated ensemble has a L times

Figure 5. Same as in Figure 3 but for experiments 4DEnVAR and LETKF9604DEnVAR = four-dimensional ensemble-varia-
tional method; EnKF = ensemble Kalman filter.
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larger ensemble size than the raw ensemble, where L is the number of eigenvectors of the localization matrix.
However, for the LGETKF, this additional cost can be offset by cost savings associated with the need to only
compute the singular value decomposition in equation (8) once for each model column (instead of for every
model grid point). In fact, if the vertical localization length scale is large enough (and L is small enough),
model-space localization can be more efficient than observation-space localization.

The performance of the modulated ensemble with ensemble Kalman filters is examined using the FV3GFS
model assimilating only radiance observations. The vertical GC localization with length scale of 1.5 scale
heights is truncated to retain 12 eigenvectors that explain 96% of the variance. Thus, given a default raw
ensemble size of 80, the modulated ensemble has size of 960. The LGETKF with model-space vertical localiza-
tion produces results similar to 4DEnVAR. Thus, the ability of the modulation approach to perform model
space localization for ensemble Kalman filters is demonstrated, and the hypothesis that the difference
between model space localization and observation space localization is the primary cause of the perfor-
mance difference observed between 4DEnVAR and EnKF is confirmed. Moreover, the performance of ensem-
ble Kalman filters assimilating radiance observations has been improved by use of the model-space
localization via a modulation approach.

Since 12 eigenvectors of the vertical GC localization matrix explain 96% of the variance, this suggests that a
960-member ensemble may be sufficient to turn off the vertical localization entirely. An experiment using the
LETKF with 960 ensemble members and no vertical localization yielded significant improvements comparing
to an 80-member ensemble with model space localization, indicating that there is still significant room for
improvement by reducing sampling error, even in an operational system with significant model error. The
extra computational cost of the LETKF960 experiment is dominated by the background ensemble forecast
step—which is perfectly scalable and occurs at a less time-critical period in an operational environment (just
before new observations become available).

Although model space localization can improve the assimilation of radiance observations for ensemble
Kalman filters and can be implemented using the modulation approach, there can be a significant increase
in computational cost for small vertical localization length scales. An alternative method for performing
model-space localization in the serial EnSRF is to utilize the linearized forward operator to allow the localiza-
tion to occur in model space before application of the forward operator (A. Shlyaeva, personal communica-
tion, 2018). Although this method is more expensive for the localization scales used here, it should be less
expensive for sufficiently small localization length scales since it becomes less computationally expensive
as localization scales decrease. An alternative method to improve the assimilation of radiance observations
in an EnKF is through the use of an empirical localization function (Lei et al., 2016). A detailed comparison
between the empirical localization function and model space localization for radiance assimilation will be
presented in a future study.

Localization was demonstrated to be the primary reason for the different results between (nonhybrid)
4DEnVAR and EnKF, but other factors (such as the use of a static component in the background-error covar-
iance, the TLNMC, the use of “outer loops” to account for nonlinearities in the forward operator, and the fact
that whereas 4DEnVar’s global solve allows all observations to contribute to the analysis at a single location,
in the (LETKF) EnKF only observations within the local observation volume of the analysis point can contri-
bute to the analysis) could also contribute when the EnKF is compared with the full operational hybrid sys-
tem. The contribution of these other factors to differences between hybrid 4DEnVAR and EnKF will be the
subject of further investigation.

Appendix A: Computational Considerations for Implementation of
LGETKF Equations (8)–(10)
Although equation (8) expresses the complete singular value decomposition (SVD) of a pxMmatrix, note that
the LGETKF equations for updating the ensemble mean (9) and perturbations (10) only require the singular
values listed in the diagonal matrix Γ1/2 and the right orthonormal singular vectors C. Hence, as noted by
Bishop et al. (2001), when the number of observations p (in a local observation volume) exceeds the number

of modulated ensemble members M the SVD problem of diagonalizing the MxM matrix eHZ	 
TeHZ¼CΓCT

involves fewer operations than the problem of diagonalizing the pxM matrix eHZ.
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For equation (10), let k be the number of variables in the vertical column to be updated by the LGETKF. One

then has the choice of either (i) explicitly computing the kxpmodified gain matrix eK¼ZC I� Γþ Ið Þ�1=2
h i

Γ�1

CT eHZ	 
T
and then operating on each of the column vectors of eHXf ’or (ii) implementing a series of operations

whose effect is equivalent to eK.
For option (i), assuming that p>M> k> N, the most expensive operation in the formation of eK is the product

of the matrices in curly brackets ZC I� Γþ Ið Þ�1=2
h i

Γ�1
n o eHZ	 
T

� �
 �
. Evaluating this term involves order

kMp operations. Once eK has been formed, evaluating eK eHXf ’
	 


requires a relatively inexpensive order kpN

operations. For option (ii) one can order the operations either from right to left or from left to right. Let
the lower index on the embedded curly brackets in the following expressions indicate the sequence of opera-
tions, then

Right-to-left sequence : ≡ Z C I� Γþ Ið Þ�1=2
h i

Γ�1 CT eHZ	 
T eHXf ’
	 

 �

1


 �
2


 �
3

( )
4

( )
5

:

Left-to-right sequence : ≡ ZCf g1 I� Γþ Ið Þ�1=2
h i

Γ�1
n o

2
CT

n o
3

eHZ	 
T

 �

4

eHXf ’
	 

 �

5

:

The orders of the number of operations associated with thematrix operations in the right to left sequence are
MpN,M2N, MN, M2N, and kMN, respectively. The most expensive step in this right to left sequence is theMpN
operations associated with the first step. For the left to right sequence, the orders are kM2, kM, kM2, kMp, and
kpN, respectively. The most expensive step in this left to right sequence is the penultimate step with order
kMp operations. Note that this order is the same as the order of the number of operations associated with
the most expensive step of option (i)’s explicit formation of the modified gain matrix. Hence, the most expen-
sive step of the right to left sequence is k/N times faster than themost expensive steps of both the left to right
sequence approach and the explicit formation of gain approach.

To reveal the actual computational implications in an atmospheric data assimilation scheme of this simple
analysis, the LGETKF was implemented in NOAA’s system in two different ways: by explicitly computing
the modified gain as in option (i) and also by implementing the right-to-left sequence of operations of option
(ii). It was found that the right-to-left sequence of operations implementation was 4–5 times faster than the
explicit formation of gain approach.
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